

Tarporley Sixth Form College

Chemistry A Level

Programme of Study

Exam Board: AQA

100% Examination

Plus the practical endorsement

(Centre assessed)

NAME:	
TARGET	
GRADE	
ASPIRATIONAL	
GRADE	

Assessment:

Paper 1	Paper 2	Paper 3
Relevant Physical	Relevant Physical	Any content
chemistry topics	chemistry topics	Any practical skills
(sections 1.1 to 1.4, 1.6	(sections 1.2 to 1.6 and	
to 1.8 and 1.10 to 1.12)	1.9)	
Inorganic chemistry	Organic chemistry	
(Section 2.1 to 2.6)	(Section 3.1 to 3.16)	
Relevant practical skills	Relevant practical skills	
Written exam: 2 hours	Written exam: 2 hours	Written exam: 2 hours
105 marks	105 marks	90 marks
35% of A-level	35% of A-level	30% of A-level
Questions 105 marks of	Questions 105 marks of	Questions 40 marks of
short and long answer	short and long answer	questions on practical
questions	questions	techniques and data
		analysis 20 marks of
		questions testing across
		the specification 30
		marks of multiple
		choice questions

Your Assessment Objectives:

AO1 Knowledge	Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures	
AO2 Application	 Apply knowledge and understanding of scientific ideas, processes, techniques and procedures: in a theoretical context in a practical context when handling qualitative data when handling qualitative data 	
AO3 Analysis	 Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation to issues, to: make judgements and reach conclusions develop and refine practical design and procedures. 	

Weighting of Assessment Objectives:

Assessment Objectives (AOs)	Paper 1 (approx. %)	Paper 2 (approx. %)	Paper 3 (approx. %)	Overall (approx. %)
AO1	30	30	32	30
AO2	48	48	34	45
AO3	22	22	34	25
Overall	35	35	30	100

20% of the overall assessment of A-level Chemistry will contain mathematical skills equivalent to Level 2 or above. At least 15% of the overall assessment of A-level Chemistry will assess knowledge, skills and understanding in relation to practical work.

Your Key Topics over the Course:

Торіс	Key Content
1.1 Atomic	The chemical properties of elements depend on their atomic structure and on the
Structure	arrangement of electrons around the nucleus. The arrangement of electrons in orbitals is
	linked to the way in which elements are organised in the Periodic Table. Chemists can
	measure the mass of atoms and molecules to a high degree of accuracy in a mass
	spectrometer. The principles of operation of a modern mass spectrometer are studied.
1.2 Amount of	When chemists measure out an amount of a substance, they use an amount in moles. The
Substance	mole is a useful quantity because one mole of a substance always contains the same
	number of entities of the substance. An amount in moles can be measured out by mass in
	grams, by volume in dm ³ of a solution of known concentration and by volume in dm3 of a
	gas.
1.3 Bonding	The physical and chemical properties of compounds depend on the ways in which the
	compounds are held together by chemical bonds and by intermolecular forces. Theories
	of bonding explain how atoms or ions are held together in these structures. Materials
	scientists use knowledge of structure and bonding to engineer new materials with
	desirable properties.
1.4 Energetics	The enthalpy change in a chemical reaction can be measured accurately. It is important to
	know this value for chemical reactions that are used as a source of heat energy in
	applications such as domestic bollers and internal combustion engines.
1.5 KINETICS	The study of kinetics enables chemists to determine how a change in conditions affects
	the speed of a chemical reaction. Whilst the reactivity of chemicals is a significant factor
	and or the speed them up or slow them down
1 6 Equilibria	In contrast with kinetics, which is a study of how quickly reactions occur, a study of
1.0 Equilibria	equilibria indicates how far reactions will go Le Chatelier's principle can be used to
	nredict the effects of changes in temperature, pressure and concentration on the yield of
	a reversible reaction. The study of the equilibrium constant K_{c} considers how the
	mathematical expression for the equilibrium constant enables us to calculate how an
	equilibrium vield will be influenced by the concentration of reactants and products.
1.7 Redox	Redox reactions involve a transfer of electrons from the reducing agent to the oxidising
Reactions	agent. The change in the oxidation state of an element in a compound or ion is used to
Reactions	identify the element that has been oxidised or reduced in a given reaction. Separate half-
	equations are written for the oxidation or reduction processes.
1.8 Thermo-	The further study of thermodynamics builds on the Energetics section and is important in
dynamics	understanding the stability of compounds and why chemical reactions occur. Enthalpy
	change is linked with entropy change enabling the free-energy change to be calculated.
1.9 Rate	In rate equations, the mathematical relationship between rate of reaction and
Equations	concentration gives information about the mechanism of a reaction that may occur in
	several steps.
1.10 Equilibrium	The further study of equilibria considers how the mathematical expression for the
Constant	equilibrium constant K_p enables us to calculate how an equilibrium yield will be
	influenced by the partial pressures of reactants and products.
1.11 Electrode	Redox reactions take place in electrochemical cells where electrons are transferred from
Potentials and	the reducing agent to the oxidising agent indirectly via an external circuit. A potential
Electro-	difference is created that can drive an electric current to do work. Electrochemical cells
chemical Cells	nave very important commercial applications as a portable supply of electricity to power

provide energy to power a vehicle. 1.12 Acids and Acids and bases are important in domestic, environmental and industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak acids, resist changes in pH and find many important industrial and biological applications. 2.1 Periodicilly The rendoit Table provides chemists with a structured organisation of the known chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whils calcium hydroxide is used in agricuture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The adogers in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents. 2.4 Period 3 The reactions of the Period 3 all enerties usits in different wasts. Some of these metals. Trends in their physical properties are standied in this section with opportunities for a wide range of practical noportunities to develop an in-depth understanding of how and why these reaction		electronic devices such as mobile phones, tablets and laptops. On a larger scale, they can
1.12 Acids and Bases Acids and bases are important in domestic, environmental and industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak acids, resist changes in pH and find many important industrial and biological applications. 2.1 Periodicity The Periodic Table provides chemists with a structured organisation of the known chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barlum sulfate, magnesium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends along and the halogens to behave as a working agents and the halide ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements and the virtue are tructed on propurities to across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur. 2.5 Transition The 3 block contains 10 elements, all of which are metals. Some of these instals are famillar		provide energy to power a vehicle.
Bases in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer Solutions, which can be made from partially neutralised weak acids, resist changes in pH and find many important industrial and biological applications. 2.1 PeriodicTily The Periodic Table provides chemists with a structured organisation of the known chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barlum sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change sol pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The PI of the solutions formed when the oxide react with water illustrates further trends in group rotice explaining the trends in ability of the halogens. 2.5 Transilion The reactions of transition metal is on sin aqueous solution provide a practical opportunity for students to sha	1.12 Acids and	Acids and bases are important in domestic, environmental and industrial contexts. Acidity
devised to measure acidity. Buffer solutions, which can be made from parially neutralised weak acids, resist changes in pH and find many important industrial and biological applications. 2.1 Periodicity The Periodic Table provides chemists with a structured organisation of the known chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the suffacts of these elements are linked to their use. Bartum sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soli pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents. 2.4 Period 3 The Factosins of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these relations and compounds where the transition metal exists in different oxidation states. Some of these metals in Groups 1 2.5 Translition The 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1	Bases	in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been
neutralised weak acids, resist changes in pH and find many important industrial and biological applications. 2.1 Periodicity The Periodic Table provides chemists with a structured organisation of the known chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barlum sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in foroup 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The PI of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in-depth understanding of how and why these reactions of the senetals are familiar as catalysts. The properties of these lements are studied in this section with opportunities for a wide range of practical investigations. 2.6 Ions in Aqueous for student to shew and to understand how transititon metal ing carring thuman ingenuity in the vast ra		devised to measure acidity. Buffer solutions, which can be made from partially
biological applications. 2.1 Periodicity The Periodic Table provides chemists with a structured organisation of the known chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities withits calcium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties a cross this period. Explanations of these reactions offer opportunities to develop an indepth understanding of how and why these reactions of these metals are familiar as catalysts. The properties of these elements are linked in this section with opportunities for a wide range of practical investigations. 2.6 Ions in netaclistion metal is to in different oxidation us solution provide a practical opportunity for students to show and to understand how transition metal isos in adjueous solution provide a practical opportunity for students to show and		neutralised weak acids, resist changes in pH and find many important industrial and
2.1 Periodicity The Periodic Table provides chemists with a structured organisation of the known chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halde ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The pI of the solutions formed when the oxide react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in-depth understanding of how and why these reactions ofme opportunities to develop an in-depth understanding of these alements are studied in this section with opportunities for a wide range of practical investigations. 2.6 Ions in Adjust the properties of these elements are studied in this section with opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory. </th <th></th> <th>biological applications.</th>		biological applications.
chemical elements from which they can make sense of their physical and chemical properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxide and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties a cross this period. Explanations of these reactions offer opportunities to develop an indept th understanding of how and why these reactions cord. 2.5 Transition The ad block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations. 2.6 Ions in Advectual the aboratory. 3.1 Introduction Organic chemistry is the study of the millions of covalent compounds alos demonstrate huma ingenuity in the vast range of syn	2.1 Periodicity	The Periodic Table provides chemists with a structured organisation of the known
properties. The historical development of the Periodic Table and models of atomic structure provide good examples of how scientific ideas and explanations develop over time. 2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions occur. 2.5 Transilion The 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metal sits to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations. 3.1 Introduction to Organic Chemistry Organic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary	5	chemical elements from which they can make sense of their physical and chemical
structure provide good examples of how scientific ideas and explanations develop over time.2.2 Group 2The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxide and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply.2.3 Group 7The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- dept understanding of how and why these reactions offer opportunities to develop an in- dept understanding of how and why these reactions offer opportunities to a develop an in- dept understanding of how and why these reactions offer opportunities to a develop an in- dept understanding of how and why these reactions offer opportunities to a develop an in- dept and 2, the transition metal in to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 Ions in to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structu		properties. The historical development of the Periodic Table and models of atomic
Localtime.2.2 Group 2The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soil PJ, which is essential for good crop production and maintaining the food supply.2.3 Group 7The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as solidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The PH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions occur.2.5 Transition MetalsThe ad block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exits in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.3.1 Introduction to Organic Chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds are named using the international Union of Pure and Applied Chemistry (UPAC) system and these compounds are used as drugs, medicines and p		structure provide good examples of how scientific ideas and explanations develop over
2.2 Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the suffates of these elements are linked to their use. Barium sulfate, magnesium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply. 2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions occur. 2.5 Transition The 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations. 2.6 Ions in Aqueous Organic Chemistry is the study of the millions of covalent compounds of the element cohon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanism are studied, which enable reactions to be explained. 3.1 Introduction <th></th> <th>time.</th>		time.
of the hydroxides and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soil PH, which is essential for good crop production and maintaining the food supply.2.3 Group 7The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic Chemistry is the study of the millions of covalent compounds of the element are compounds are used as drugs, medicines and plastic. Organic compounds are named using the international Union of Pure and Applied Chemistry (UPAC) system and the structure or formula of molecules can be represented in different ways. Organic mamed using the internati	2.2 Group 2	The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities
sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst calcium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply.2.3 Group 7The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 at 2, the transition metal sti 1 to L form coloured compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 Ions in Aqueous SolutionOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occuring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the struc		of the hydroxides and the sulfates of these elements are linked to their use. Barium
whilst calcium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply.2.3 Group 7The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metal si Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 Ions in Aqueous SolutionOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds are named using the International Union of Pure and Applied Chemistry (UPAC) system and the structure of formula of molecules can be represented in different ways. Organic mentals in usar are considered in this section.3.1 Introduction to Organic ChemistryAlkanes are the main constituent of crude oil, which is an i		sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines
good crop production and maintaining the food supply.2.3 Group 7The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MeltalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal sits in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 Ions in Aqueous solutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented		whilst calcium hydroxide is used in agriculture to change soil pH, which is essential for
2.3 Group 7 The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents. 2.4 Period 3 The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an indepth understanding of how and why these reactions occur. 2.5 Transition The 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metal ST it oCu form coloured compounds and compounds where the transition metal exits in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations. 2.6 Ions in Aqueous for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory. 3.1 Introduction to Organic Chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds any from naturally occurring petroleum fuels to MA and the molecules in living systems. Organic compounds are named using the International Union of Pure and Applied Chemistry. (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained. 3.2 Alkanes Alkanes are the main constituent of cru		good crop production and maintaining the food supply.
are examined and explained. Challenges in studying the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 Ions in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds and beenomstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (UPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are home main constituent of crude oil, whic	2.3 Group 7	The halogens in Group 7 are very reactive non-metals. Trends in their physical properties
group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element fuels to DNA and the molecules in living systems. Organic compounds are uman ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and playtic. Organic compounds are uname using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic metanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important r	I	are examined and explained. Challenges in studying the properties of elements in this
agents and the halide ions to behave as reducing agents.2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemistry. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and these tructure or formula of molecules can be represented in different ways. Organic mechanisms are studied in this section.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 H		group include explaining the trends in ability of the halogens to behave as oxidising
2.4 Period 3The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkaneesHalogenalkanes are much more		agents and the halide ions to behave as reducing agents.
solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkaneesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaccuticals. The us	2.4 Period 3	The reactions of the Period 3 elements with oxygen are considered. The pH of the
across this period. Explanations of these reactions offer opportunities to develop an in- depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 Alkanes HalogenalkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.4 AlkenesIn alkenes, the high electron density of the carbon-carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces additi		solutions formed when the oxides react with water illustrates further trends in properties
depth understanding of how and why these reactions occur.2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section alkanes. They have		across this period. Explanations of these reactions offer opportunities to develop an in-
2.5 Transition MetalsThe 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 Ions in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chloro		depth understanding of how and why these reactions occur.
Metalsand 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCS) on the atmosphere.3.4 AlkenesIn alkenes, the high electron densit	2.5 Transition	The 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1
the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 Ions in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCS) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon-carbon double bond leads to attack on these molecules by electrophiles. This sect	Metals	and 2, the transition metals Ti to Cu form coloured compounds and compounds where
as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		the transition metal exists in different oxidation states. Some of these metals are familiar
Image: comportanities for a wide range of practical investigations.2.6 lons in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		as catalysts. The properties of these elements are studied in this section with
2.6 Ions in Aqueous SolutionThe reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3Halogenoalkanes as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon-carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		opportunities for a wide range of practical investigations.
Aqueous Solutionfor students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3Halogenalkanes as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCS) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon-carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	2.6 lons in	The reactions of transition metal ions in aqueous solution provide a practical opportunity
Solutiontest-tube reactions in the laboratory.3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon-carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	Aqueous	for students to show and to understand how transition metal ions can be identified by
3.1 Introduction to Organic ChemistryOrganic chemistry is the study of the millions of covalent compounds of the element carbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	Solution	test-tube reactions in the laboratory.
to Organic Chemistrycarbon. These structurally diverse compounds vary from naturally occurring petroleum fuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	3.1 Introduction	Organic chemistry is the study of the millions of covalent compounds of the element
Chemistryfuels to DNA and the molecules in living systems. Organic compounds also demonstrate human ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	to Organic	carbon. These structurally diverse compounds vary from naturally occurring petroleum
Chemistryhuman ingenuity in the vast range of synthetic materials created by chemists. Many of these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	Chomistry	fuels to DNA and the molecules in living systems. Organic compounds also demonstrate
these compounds are used as drugs, medicines and plastics. Organic compounds are named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	Спетнізну	human ingenuity in the vast range of synthetic materials created by chemists. Many of
named using the International Union of Pure and Applied Chemistry (IUPAC) system and the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		these compounds are used as drugs, medicines and plastics. Organic compounds are
the structure or formula of molecules can be represented in different ways. Organic mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		named using the International Union of Pure and Applied Chemistry (IUPAC) system and
mechanisms are studied, which enable reactions to be explained.3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3Halogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		the structure or formula of molecules can be represented in different ways. Organic
3.2 AlkanesAlkanes are the main constituent of crude oil, which is an important raw material for the chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3Halogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		mechanisms are studied, which enable reactions to be explained.
chemical industry. Alkanes are also used as fuels and the environmental consequences of this use are considered in this section.3.3 Halogenalkanes en restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	3.2 Alkanes	Alkanes are the main constituent of crude oil, which is an important raw material for the
this use are considered in this section.3.3HalogenoalkanesHalogenoalkanesas refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		chemical industry. Alkanes are also used as fuels and the environmental consequences of
3.3 HalogenalkanesHalogenoalkanes are much more reactive than alkanes. They have many uses, including as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		this use are considered in this section.
Halogenalkanesas refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.3.4 AlkenesIn alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	3.3	Halogenoalkanes are much more reactive than alkanes. They have many uses, including
been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere. 3.4 Alkenes In alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	Halogenalkanes	as refrigerants, as solvents and in pharmaceuticals. The use of some halogenoalkanes has
3.4 Alkenes In alkenes, the high electron density of the carbon–carbon double bond leads to attack on these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	. alogonalitatios	been restricted due to the effect of chlorofluorocarbons (CFCs) on the atmosphere.
these molecules by electrophiles. This section also covers the mechanism of addition to the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.	3.4 Alkenes	In alkenes, the high electron density of the carbon–carbon double bond leads to attack on
the double bond and introduces addition polymers, which are commercially important and have many uses in modern society.		these molecules by electrophiles. This section also covers the mechanism of addition to
and have many uses in modern society.		the double bond and introduces addition polymers, which are commercially important
		and have many uses in modern society.

3.5 Alcohols	Alcohols have many scientific, medicinal and industrial uses. Ethanol is one such alcohol and it is produced using different methods, which are considered in this section. Ethanol can be used as a biofuel.
3.6 Organic Analysis	Our understanding of organic molecules, their structure and the way they react, has been enhanced by organic analysis. This section considers some of the analytical techniques used by chemists, including test-tube reactions and spectroscopic techniques.
3.7 Optical Isomerism	Compounds that contain an asymmetric carbon atom form stereoisomers that differ in their effect on plane polarised light. This type of isomerism is called optical isomerism.
3.8 Aldehydes and Ketones	Aldehydes, ketones, carboxylic acids and their derivatives all contain the carbonyl group which is attacked by nucleophiles. This section includes the addition reactions of aldehydes and ketones.
3.9 Carboxylic Acids and Esters	Carboxylic acids are weak acids but strong enough to liberate carbon dioxide from carbonates. Esters occur naturally in vegetable oils and animal fats. Important products obtained from esters include biodiesel, soap and glycerol.
3.10 Aromatic Chemistry	Aromatic chemistry takes benzene as an example of this type of molecule and looks at the structure of the benzene ring and its substitution reactions.
3.11 Amines	Amines are compounds based on ammonia where hydrogen atoms have been replaced by alkyl or aryl groups. This section includes their reactions as nucleophiles.
3.12 Polymers	The study of polymers is extended to include condensation polymers. The ways in which condensation polymers are formed are studied, together with their properties and typical uses. Problems associated with the reuse or disposal of both addition and condensation polymers are considered.
3.13 Biochemical Molecules	Amino acids, proteins and DNA are the molecules of life. In this section, the structure and bonding in these molecules and the way they interact is studied. Drug action is also considered.
3.14 Organic Synthesis	The formation of new organic compounds by multi-step syntheses using reactions included in the specification is covered in this section.
3.15 Nuclear Magnetic Resonance Spectroscopy	Chemists use a variety of techniques to deduce the structure of compounds. In this section, nuclear magnetic resonance spectroscopy is added to mass spectrometry and infrared spectroscopy as an analytical technique. The emphasis is on the use of analytical data to solve problems rather than on spectroscopic theory.
3.16 Chroma- tography	Chromatography provides an important method of separating and identifying components in a mixture. Different types of chromatography are used depending on the composition of mixture to be separated.

Text Books

There are a variety of different books that you can use to study A level Chemistry. We recommend the Oxford Chemistry A Level text book as your main course companion. Other useful books include the CGP AQA Year 1 & 2 Complete revision and CGP Essential Maths Skills for A Level Chemistry.

You will find other text books in the school library, it is useful to look topics up in more than one book when you find something difficult.

How your course is structured:

Year 12			
Physical ChemistryAtomic StructureAmount of Substance	Inorganic Chemistry Periodicity 	 Organic Chemistry Introduction to Organic Chemistry Alkanes 	
	Christmas Holidays		
Physical ChemistryBondingEnergeticsKinetics	Inorganic Chemistry • Group 2 Elements	Organic Chemistry Halogenalkanes Alkenes	
	Easter Holidays		
Physical ChemistryEquilibriaRedox Reactions	Inorganic Chemistry Group 7 Elements 	Organic Chemistry Alcohols Organic Analysis 	
Summer Holidays			
	Year 13		
 Physical Chemistry Rate Equations Thermodynamics Equilibrium Constants 	Inorganic Chemistry Transition Metals 	Organic Chemistry Optical Isomerism Aldehydes and Ketones Carboxylic Acids 	
	Christmas Holidays		
Physical ChemistryAcids and Bases	Inorganic Chemistry Ions in Aqueous Solution 	Organic Chemistry Aromatic Chemistry Amines Polymers Biochemical Molecules 	
Easter Holidays			
 Physical Chemistry Electrode Potentials and Electrochemical Cells 	Inorganic ChemistryPeriod 3 Oxides	Organic Chemistry Organic Synthesis nmr Spectroscopy Chromatography 	